Linear Regression Model Implementation
in
Regrssion
Linear Regression Model Implementation
Author: Maaz Waheed
Overview
This implementation demonstrates a complete workflow for building and evaluating a Linear Regression model using scikit-learn.
Code Implementation
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# Split data into training and test sets
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
# Fit Linear Regression model
lr = LinearRegression()
lr.fit(x_train, y_train)
# Print model score
print("Linear Regression R^2 score:", lr.score(x_test, y_test))
# Make prediction on new data
new_data = [[42491, 3, 2, 1500, 2000, 1, 0, 0, 3, 7, 1500, 0, 2000, 0, 122004, 52.9, -114.5, 1500, 2000, 2, 10]]
predicted_price = lr.predict(new_data)
print("Predicted Price:", predicted_price[0][0])
Key Components
1. Data Splitting
- Uses
train_test_split()with 80/20 train-test ratio random_state=42ensures reproducible results- Features:
x, Target:y
2. Model Training
- Initializes
LinearRegression()with default parameters - Fits model on training data:
x_train,y_train
3. Model Evaluation
- R² Score: Measures proportion of variance explained by the model
- Evaluated on test set to assess generalization performance
4. Prediction
- Demonstrates prediction on new data with 21 features
- Output format: Single prediction value
Parameters
- test_size: 0.2 (20% testing, 80% training)
- random_state: 42 (ensures consistent splits)
- LinearRegression: All default parameters
Example Output
Linear Regression R^2 score: 0.7019654586300859
Predicted Price: 325323.83949833363
Interpretation
- R² Score (0.702): Model explains approximately 70.2% of the variance in the target variable
- Predicted Price: $325,323.84 for the given input features